MATH 2050A: Mathematical Analysis I (2016 1st term)

1 Sequentially Compact Sets and Compact Sets in \mathbb{R}

Definition 1.1 Let A be a subset of \mathbb{R}. A point $z \in \mathbb{R}$ is called a limit point of A if for any $\delta>0$, there is an element $a \in A$ such that $0<|z-a|<\delta$. Put $D(A)$ the set of all limit points of A.

Example $1.2 \quad$ (i) $D([a, b])=D((a, b))=[a, b]$.
(ii) $D([0,1] \cup\{2\})=[0,1]$.
(iii) $D(\mathbb{N})=\emptyset$.
(iv) $D(\{a\})=\emptyset$ for any $a \in \mathbb{R}$.

Definition 1.3 A subset A of \mathbb{R} is said to be closed in \mathbb{R} if $D(A) \subseteq A$.
Example 1.4 (i) $\{a\} ;[a, b] ;[0,1] \cup\{2\} ; \mathbb{N}$ and \mathbb{R} all are closed subsets of \mathbb{R}.
(ii) (a, b) and \mathbb{Q} are not closed.

The following Lemma can be directly shown by the definition, so, the proof is omitted here.
Lemma 1.5 Let A be a subset of \mathbb{R}. The following statements are equivalent.
(i) A is closed.
(ii) For each element $x \in \mathbb{R} \backslash A$, there is $\delta_{x}>0$ such that $\left(x-\delta_{x}, x+\delta_{x}\right) \cap A=\emptyset$.
(iii) If $\left(x_{n}\right)$ is a sequence in A and $\lim x_{n}$ exists, then $\lim x_{n} \in A$.

Definition 1.6 Let A be a subset of \mathbb{R}.
(i) A is said to be sequentially compact if every sequence $\left(x_{n}\right)$ in A has a convergent subsequence $\left(x_{n_{k}}\right)$ with $\lim _{k} x_{n_{k}} \in A$.
(ii) A is said to be compact if for any open intervals cover $\left\{J_{\alpha}\right\}_{\alpha \in \Lambda}$ of A, that is, each J_{α} is an open interval and

$$
A \subseteq \bigcup_{\alpha \in \Lambda} J_{\alpha}
$$

we can find finitely many $J_{\alpha_{1}}, . ., J_{\alpha_{N}}$ such that $A \subseteq J_{\alpha_{1}} \cup \cdots \cup J_{\alpha_{N}}$.

Example 1.7 (i) Every closed and bounded interval is sequentially compact.
In fact, if $\left(x_{n}\right)$ is any sequence in a closed and bounded interval $[a, b]$, then $\left(x_{n}\right)$ is bounded. Then by Bolzano-Weierstrass Theorem (see [1, Theorem 3.4.8]), (x_{n}) has a convergent subsequence $\left(x_{n_{k}}\right)$. Notice that since $a \leq x_{n_{k}} \leq b$ for all k, then $a \leq \lim _{k} x_{n_{k}} \leq b$, and thus $\lim _{k} x_{n_{k}} \in[a, b]$. Therefore A is sequentially compact.
(ii) $(0,1]$ is not sequentially compact. In fact, if we consider $x_{n}=1 / n$, then $\left(x_{n}\right)$ is a sequence in $(0,1]$ but it has no convergent subsequence with the limit sitting in $(0,1]$.
(iii) $(0,1]$ is not compact. In fact, if we put $J_{n}=(1 / n, 2)$ for $n=2,3 \ldots$, then $(0,1] \subseteq \bigcup_{n=2}^{\infty} J_{n}$, but we cannot find finitely many $J_{n_{1}}, \ldots, J_{n_{K}}$ such that $(0,1] \subseteq J_{n_{1}} \cup \cdots \cup J_{n_{K}}$. So $(0,1]$ is not compact.

Theorem 1.8 (Heine-Borel Theorem) Every closed and bounded interval $[a, b]$ is a compact set.

Proof: Suppose that $[a, b]$ is not compact. Then there is an open intervals cover $\left\{J_{\alpha}\right\}_{\alpha \in \Lambda}$ of $[a, b]$ but it it has no finite sub-cover. Let $I_{1}:=\left[a_{1}, b_{1}\right]=[a, b]$ and m_{1} the mid-point of $\left[a_{1}, b_{1}\right]$. Then by the assumption, $\left[a_{1}, m_{1}\right]$ or $\left[m_{1}, b_{1}\right]$ cannot be covered by finitely many J_{α} 's. We may assume that $\left[a_{1}, m_{1}\right]$ cannot be covered by finitely many J_{α} 's. Put $I_{2}:=\left[a_{2}, b_{2}\right]=\left[a_{1}, m_{1}\right]$. To repeat the same steps, we can obtain a sequence of closed and bounded intervals $I_{n}=\left[a_{n}, b_{n}\right]$ with the following properties:
(a) $I_{1} \supseteq I_{2} \supseteq I_{3} \supseteq \cdots \cdots$;
(b) $\lim _{n}\left(b_{n}-a_{n}\right)=0$;
(c) each I_{n} cannot be covered by finitely many J_{α} 's.

Then by the Nested Intervals Theorem (see [1, Theorem 2.5.2, Theorem 2.5.3]), there is an element $\xi \in \bigcap_{n} I_{n}$ such that $\lim _{n} a_{n}=\lim _{n} b_{n}=\xi$. In particular, we have $a=a_{1} \leq \xi \leq$ $b_{1}=b$. So, there is $\alpha_{0} \in \Lambda$ such that $\xi \in J_{\alpha_{0}}$. Since $J_{\alpha_{0}}$ is open, there is $\varepsilon>0$ such that $(\xi-\varepsilon, \xi+\varepsilon) \subseteq J_{\alpha_{0}}$. On the other hand, there is $N \in \mathbb{N}$ such that a_{N} and b_{N} in $(\xi-\varepsilon, \xi+\varepsilon)$ because $\lim _{n} a_{n}=\lim _{n} b_{n}=\xi$. Thus we have $I_{N}=\left[a_{N}, b_{N}\right] \subseteq(\xi-\varepsilon, \xi+\varepsilon) \subseteq J_{\alpha_{0}}$. It contradicts to the Property (c) above. The proof is finished.

Theorem 1.9 Let A be a subset of \mathbb{R}. The following statements are equivalent.
(i) A is compact.
(ii) A is sequentially compact.
(iii) A is closed and bounded.

Proof: The result is shown by the following path $(i) \Rightarrow(i i) \Rightarrow(i i i) \Rightarrow(i)$.
For $(i) \Rightarrow(i i)$, suppose that A is compact but it is not sequentially compact. Then there is a sequence $\left(x_{n}\right)$ in A such that $\left(x_{n}\right)$ has no subsequent which has the limit in A. Put $X=\left\{x_{n}: n=1,2, \ldots\right\}$. Then X is infinite. Also, for each element $a \in A$, there is $\delta_{a}>0$ such that $J_{a}:=\left(a-\delta_{a}, a+\delta_{a}\right) \cap X$ is finite. Indeed, if there is an element $a \in A$ such that $(a-\delta, a+\delta) \cap A$ is infinite for all $\delta>0$, then $\left(x_{n}\right)$ has a convergent subsequence with the
limit a. On the other hand, we have $A \subseteq \bigcup_{a \in A} J_{a}$. Then by the compactness of A, we can find finitely many a_{1}, \ldots, a_{N} such that $A \subseteq J_{a_{1}} \cup \cdots \cup J_{a_{N}}$. So we have $X \subseteq J_{a_{1}} \cup \cdots \cup J_{a_{N}}$. Then by the choice of J_{a} 's, X must be finite. This leads to a contradiction. Therefore, A is sequentially compact.
For $(i i) \Rightarrow($ iii $)$, assume A is sequentially compact. We first claim that A must be bounded. Otherwise, if A is unbounded and if we fix $x_{1} \in A$, then there is an element $x_{2} \in A$ such that $\left|x_{1}-x_{2}\right|>1$. By the unboundedness of A again, we can find $x_{3} \in A$ such that $\left|x_{3}-x_{k}\right|>1$ for $k=1,2$. To repeat the same step, we can obtain a sequence $\left(x_{n}\right)$ in A such that $\left|x_{m}-x_{n}\right|>1$ for $m \neq n$. Thus $\left(x_{n}\right)$ has no convergent subsequence and hence A is not sequentially compact. So A must be bounded if A is sequentially compact.
Secondly, we will see that A must be closed. Let $\left(x_{n}\right)$ be a sequence in A such that $a:=\lim x_{n}$ in \mathbb{R}. We want to show that $a \in A$ by Lemma 1.5. In fact, since A is sequentially compact, then $\left(x_{n}\right)$ has a convergent subsequence $\left(x_{n_{k}}\right)$ with $\lim _{k} x_{n_{k}} \in A$. This gives $a=\lim _{n} x_{n}=$ $\lim _{k} x_{n_{k}} \in A$. So, A is closed. Part (ii) follows.
It remains to show $(i i i) \Rightarrow(i)$. Suppose that A is closed and bounded. Then we can find a closed and bounded interval $[a, b]$ such that $A \subseteq[a, b]$. Now let $\left\{J_{\alpha}\right\}_{\alpha \in \Lambda}$ be an open intervals cover of A. Notice that for each element $x \in[a, b] \backslash A$, there is $\delta_{x}>0$ such that $\left(x-\delta_{x}, x+\delta_{x}\right) \cap A=\emptyset$ since A is closed. If we put $I_{x}=\left(x-\delta_{x}, x+\delta_{x}\right)$ for $x \in[a, b] \backslash A$, then we have

$$
[a, b] \subseteq \bigcup_{\alpha \in \Lambda} J_{\alpha} \cup \bigcup_{x \in[a, b] \backslash A} I_{x}
$$

Using the Heine-Borel Theorem 1.8, we can find finitely many J_{α} 's and I_{x} 's, say $J_{\alpha_{1}}, \ldots, J_{\alpha_{N}}$ and $I_{x_{1}}, \ldots, I_{x_{K}}$, such that $A \subseteq[a, b] \subseteq J_{\alpha_{1}} \cup \cdots \cup J_{\alpha_{N}} \cup I_{x_{1}} \cup \cdots \cup I_{x_{K}}$. Note that $I_{x} \cap A=\emptyset$ for each $x \in[a, b] \backslash A$ by the choice of I_{x}. Therefore, we have $A \subseteq J_{\alpha_{1}} \cup \cdots \cup J_{\alpha_{N}}$ and hence A is compact.
The proof is finished.

2 Complete subsets in \mathbb{R}

Definition 2.1 A sequence $\left(x_{n}\right)$ in \mathbb{R} is called a Cauchy sequence if for every $\varepsilon>0$, there is a positive integer N such that $\left|x_{m}-x_{n}\right|<\varepsilon$ for all $m, n \geq N$.

Remark 2.2 A sequence $\left(x_{n}\right)$ is not a Cauchy sequence if and only if there is $\varepsilon>0$ such that for any positive integer N, we can find some positive integers m, n with $m, n \geq N$ satisfying $\left|x_{m}-x_{n}\right| \geq \varepsilon$.

Example 2.3 For each positive integer n, if we put $x_{n}=\sum_{k=1}^{n} 1 / k$, then $\left(x_{n}\right)$ is not a Cauchy sequence. Indeed, notice that for any positive integer n, we have

$$
\left|x_{2 n}-x_{n}\right|=\frac{1}{n+1}+\cdots+\frac{1}{2 n} \geq \frac{n}{2 n}=\frac{1}{2}
$$

So, if we take $\varepsilon=1 / 2$, then for any positive integer N, we have $\left|x_{2 N}-x_{N}\right| \geq \varepsilon$. Thus $\left(x_{n}\right)$ is not a Cauchy sequence.

Proposition 2.4 Every convergent sequence is a Cauchy sequence.

Proof: Let $\left(x_{n}\right)$ be a convergent sequence and $L=\lim x_{n}$. Then for any $\varepsilon>0$, there is $N \in \mathbb{N}$ such that $\left|L-x_{n}\right|<\varepsilon$ for all $n \geq N$. So, for any $m, n \geq N$, we have $\left|x_{m}-x_{n}\right| \leq$ $\left|x_{n}-L\right|+\left|L-x_{m}\right|<\varepsilon$. Hence $\left(x_{n}\right)$ is Cauchy.

Definition 2.5 A subset A of \mathbb{R} is said to be complete if for any Cauchy sequence $\left(x_{n}\right)$ in A is convergent in A, that is, $x_{n} \in A$ for all n and $\lim x_{n}$ belongs to A.

The following result is one of important theorems in history.

Theorem 2.6 \mathbb{R} is complete, that is, every Cauchy sequence in \mathbb{R} is convergent. Consequently, a sequence is convergent in \mathbb{R} if and only if it is a Cauchy sequence.

Proof: Let $\left(x_{n}\right)$ be a Cauchy sequence in \mathbb{R}. We first claim that $\left(x_{n}\right)$ must be bounded. Indeed, by the definition of a Cauchy sequence, if we consider $\varepsilon=1$, then there is a positive integer N such that $\left|x_{m}-x_{N}\right|<1$ for all $m \geq N$ and thus we have $\left|x_{m}\right|<1+\left|x_{N}\right|$ for all $m \geq N$. So, if we let $M=\max \left(\left|x_{1}\right|, \ldots,\left|x_{N-1}\right|,\left|x_{N}\right|+1\right)$, then we have $\left|x_{n}\right| \leq M$ for all n. Hence $\left(x_{n}\right)$ is bounded.
So, we can now apply the Bolzano-Weierstrass Theorem, $\left(x_{n}\right)$ has a convergent subsequence $\left(x_{n_{k}}\right)$. Let $L:=\lim _{k} x_{n_{k}}$. We are going to show that $L=\lim _{n} x_{n}$.
Let $\varepsilon>0$. Since $\left(x_{n}\right)$ is Cauchy, there is $N \in \mathbb{N}$ such that $\left|x_{m}-x_{n}\right|<\varepsilon$ for all $m, n \geq N$. On the other hand, since $\lim _{k} x_{n_{k}}=L$, we can find a positive integer K so that $\left|L-x_{n_{k}}\right|<\varepsilon$ for all $k \geq K$. Now if we choose $r \geq K$ such that $n_{r} \geq N$, then for any $n \geq N$, we have $\left|x_{n}-L\right| \leq\left|x_{n}-x_{n_{r}}\right|+\left|x_{n_{r}}-L\right|<2 \varepsilon$. Thus $\left(x_{n}\right)$ is convergent with $\lim _{n} x_{n}=L$.
The finial assertion follows from Proposition 2.4 at once.
The proof is finished.
Corollary 2.7 Let A be a subset of \mathbb{R}. Then A is complete if and only if A is closed in \mathbb{R}
Proof: Suppose that A is complete. Let $\left(x_{n}\right)$ be a convergent sequence in A. Then it must be a Cauchy sequence by Proposition 2.4. By the definition of completeness, $\lim x_{n} \in A$ and thus A is closed.
Conversely, assume that A is closed in \mathbb{R}. Let $\left(x_{n}\right)$ be a Cauchy sequence in A. Theorem 2.6 tells us that $\lim _{n} x_{n}$ exists. Since A is closed, $\lim _{n} x_{n} \in A$. The proof is finished.

Corollary 2.8 Every compact subset of \mathbb{R} is complete.
Proof: It follows from Theorem 1.9 and Corollary 2.7 at once.

3 Continuous functions defined on compact sets

Throughout this section, let A be a non-empty subset of \mathbb{R} and $f: A \rightarrow \mathbb{R}$ a function defined on A.

Proposition 3.1 Suppose that f is continuous on A. If A is compact, then there are points c and b in A such that

$$
f(c)=\max \{f(x): x \in A\} \text { and } f(b)=\min \{f(x): x \in A\} .
$$

Proof: By considering the function $-f$ on A, it needs to show that $f(c)=\max \{f(x): x \in A\}$ for some $c \in A$.

Method I:

We first claim that f is bounded on A, that is, there is $M>0$ such that $|f(x)| \leq M$ for all $x \in A$. Suppose not. Then for each $n \in \mathbb{N}$, we can find $a_{n} \in A$ such that $\left|f\left(a_{n}\right)\right|>n$. Recall that A is compact if and only if it is closed and bounded (see Theorem 1.9). So, (a_{n}) is a bounded sequence in A. Then by the Bolzano-Weierstrass Theorem, there is a convergent subsequence $\left(a_{n_{k}}\right)$ of $\left(a_{n}\right)$. Put $a=\lim _{k} a_{n_{k}}$. Since A is closed and f is continuous, $a \in A$, from this, it follows that $f(a)=\lim _{k} f\left(a_{n_{k}}\right)$. It is absurd because $n_{k}<\left|f\left(a_{n_{k}}\right)\right| \rightarrow|f(a)|$ for all k and $n_{k} \rightarrow \infty$. So f must be bounded. So $L:=\sup \{f(x): x \in A\}$ must exist by the Axiom of Completeness.
It remains to show that there is a point $c \in A$ such that $f(c)=L$. In fact, by the definition of supremum, there is a sequence $\left(x_{n}\right)$ in A such that $\lim _{n} f\left(x_{n}\right)=L$. Then by the BolzanoWeierstrass Theorem again, there is a convergent subsequence $\left(x_{n_{k}}\right)$ of $\left(x_{n}\right)$ with $\lim _{k} x_{n_{k}} \in A$. If we put $c:=\lim _{k} x_{n_{k}} \in A$, then $f(c)=\lim _{k} f\left(x_{n_{k}}\right)=L$ as desired. The proof is finished.

Method II:

We first claim that f is bounded above. Notice that for each $x \in A$, there is $\delta_{x}>0$ such that $f(y)<f(x)+1$ whenever $y \in A$ with $|x-y|<\delta_{x}$ since f is continuous on A. Now if we put $J_{x}:=\left(x-\delta_{x}, x+\delta_{x}\right)$ for each $x \in A$, then $A \subseteq \bigcup_{x \in A} J_{x}$. So, by the compactness of A, we can find finitely many x_{1}, \ldots, x_{N} in A such that $A \subseteq J_{x_{1}} \cup \cdots \cup J_{x_{N}}$ and it follows that for each $x \in A$, we have $f(x)<1+f\left(x_{k}\right)$ for some $k=1, \ldots, N$. Now if we put $M:=\max \left\{1+f\left(x_{1}\right), \ldots, 1+f\left(x_{N}\right)\right\}$, then f is bounded above by M on A.
Put $L:=\sup \{f(x): x \in A\}$. It remains to show that there is an element $c \in A$ such that $f(c)=L$. Suppose not. Notice that since $f(x) \leq L$ for all $x \in A$, we have $f(x)<L$ for all $x \in A$ under this assumption. Therefore, by the continuity of f, for each $x \in A$, there are $\varepsilon_{x}>0$ and $\eta_{x}>0$ such that $f(y)<f(x)+\varepsilon_{x}<L$ whenever $y \in A$ with $|y-x|<\delta_{x}$. Put $I_{x}:=\left(x-\eta_{x}, x+\eta_{x}\right)$. Then $A \subseteq \bigcup_{x \in A} I_{x}$. By the compactness of A again, A can be covered by finitely many $I_{x_{1}}, \ldots, I_{x_{N}}$. If we let $L^{\prime}:=\max \left\{f\left(x_{1}\right)+\varepsilon_{x_{1}}, \ldots, f\left(x_{N}\right)+\varepsilon_{x_{N}}\right\}$, then $f(x)<L^{\prime}<L$ for all $x \in A$. It contradicts to L being the least upper bound for the set $\{f(x): x \in A\}$. The proof is complete.

Definition 3.2 We say that a function f is upper semi-continuous (resp. lower semi-continuous) on A if for each element $z \in A$ and for any $\varepsilon>0$, there is $\delta>0$ such that $f(x)<f(z)+\varepsilon$ (resp. $f(z)-\varepsilon<f(x)$) whenever $x \in A$ with $|x-z|<\delta$.

Remark 3.3 (i) It is clear that a function is continuous if and only if it is upper semicontinuous and lower semi-continuous. However, an upper semi-continuous function need not be continuous. For example, define a function $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}1 & \text { if } x \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

(ii) From the Method II above, we see that if f is upper semi-continuous (resp. lower semi-continuous) on a compact set A, then the function f attains the supremum (resp. infimum) on A.

Proposition 3.4 If $f: A \rightarrow \mathbb{R}$ is continuous and A is compact, then the image $f(A)$ is compact. Furthermore, if f is injective, then the inverse map $f^{-1}: f(A) \rightarrow A$ is also continuous.

Proof: Recall the fact that a subset of \mathbb{R} is closed if and only if it is closed and bounded (see Theorem 1.9). So, it needs to show that $f(A)$ is a closed and bounded set. We first notice that $f(A)$ is bounded by Proposition 3.1. It remains to show that $f(A)$ is a closed subset of \mathbb{R}. Let $y \in \overline{f(A)}$. Then there is a sequence $\left(x_{n}\right)$ in A such that $\lim f\left(x_{n}\right)=y$. Then by Theorem 1.9 again, there is a convergent subsequence $\left(x_{n_{k}}\right)$ of $\left(x_{n}\right)$ such that $\lim _{k} x_{n_{k}} \in A$. Since f is continuous, it follows that $y=\lim _{k} f\left(x_{n_{k}}\right)=f\left(\lim _{k} x_{n_{k}}\right) \in f(A)$ and thus $f(A)$ is closed.
Concerning the last assertion, let $B=f(A)$ and $g=f^{-1}: B \rightarrow A$. Suppose that g is not continuous at some $b \in B$. Put $a=g(b) \in A$. Then there are $\eta>0$ and a sequence $\left(y_{n}\right)$ in B such that $\lim y_{n}=b$ but $\left|g\left(y_{n}\right)-g(b)\right| \geq \eta$ for all n. Let $x_{n}:=g\left(y_{n}\right) \in A$. So, by the compactness of A, there is a convergent subsequence $\left(x_{n_{k}}\right)$ of $\left(x_{n}\right)$ such that $\lim _{k} x_{n_{k}} \in A$. Let $a^{\prime}=\lim _{k} x_{n_{k}}$. Then we have $f\left(a^{\prime}\right)=\lim _{k} f\left(x_{n_{k}}\right)=\lim _{k} y_{n_{k}}=b$. On the other hand, since $\left|g\left(y_{n}\right)-g(b)\right| \geq \eta$ for all n, we see that

$$
\left|x_{n_{k}}-a\right|=\left|g\left(y_{n_{k}}\right)-g(b)\right| \geq \eta>0
$$

for all k and hence $\left|a^{\prime}-a\right|>0$. This implies that $a \neq a^{\prime}$ but $f\left(a^{\prime}\right)=b=f(a)$. It contradicts to f being injective.
The proof is finished.
Remark 3.5 The assumption of the compactness in the last assertion of Proposition 3.4 is essential. For example, consider $A=[0,1) \cup[2,3]$ and define $f: A \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}x & \text { if } x \in[0,1) \\ x-1 & \text { if } x \in[2,3]\end{cases}
$$

Then $f(A)=[0,2]$ and f is a continuous bijection from A onto $[0,2]$ but $f^{-1}:[0,2] \rightarrow A$ is not continuous at $y=1$.

Example 3.6 By Proposition 3.4, it is impossible to find a continuous surjection from $[0,1]$ onto $(0,1)$ since $[0,1]$ is compact but $(0,1)$ is not. Thus $[0,1]$ is not homeomorphic to $(0,1)$.

Definition 3.7 A function $f: A \rightarrow \mathbb{R}$ is said to be uniformly continuous on A if for any $\varepsilon>0$, there is $\delta>0$ such that $|f(x)-f(y)|<\varepsilon$ whenever $x, y \in A$ with $|x-y|<\delta$.

Remark 3.8 It is clear that if f is uniformly continuous on A, then it must be continuous on A. However, the converse does not hold. For example, consider the function $f:(0,1] \rightarrow \mathbb{R}$ defined by $f(x):=1 / x$. Then f is continuous on $(0,1]$ but it is not uniformly continuous on $(0,1]$. Notice that f is not uniformly continuous on A means that
there is $\varepsilon>0$ such that for any $\delta>0$, there are $x, y \in A$ with $|x-y|<\delta$ but $|f(x)-f(y)| \geq \varepsilon$.
Notice that $1 / x \rightarrow \infty$ as $x \rightarrow 0+$. So if we let $\varepsilon=1$, then for any $\delta>0$, we choose $n \in \mathbb{N}$ such that $1 / n<\delta$ and thus we have $|1 / 2 n-1 / n|=1 / 2 n<\delta$ but $|f(1 / n)-f(1 / 2 n)|=n>$ $1=\varepsilon$. Therefore, f is not uniformly continuous on $(0,1]$.

Example 3.9 Let $0<a<1$. Define $f(x)=1 / x$ for $x \in[a, 1]$. Then f is uniformly continuous on $[a, 1]$. In fact for $x, y \in[a, 1]$, we have

$$
|f(x)-f(y)|=\left|\frac{1}{x}-\frac{1}{y}\right|=\frac{|x-y|}{x y} \leq \frac{|x-y|}{a^{2}}
$$

So for any $\varepsilon>0$, we can take $0<\delta<a^{2} \varepsilon$. Thus if $x, y \in[a, 1]$ with $|x-y|<\delta$, then we have $|f(x)-f(y)|<\varepsilon$ and hence f is uniformly continuous on $[a, 1]$.

Proposition 3.10 If f is continuous on a compact set A, then f is uniformly continuous on A.

Proof: Compactness argument:

Let $\varepsilon>0$. Since f is continuous on A, then for each $x \in A$, there is $\delta_{x}>0$, such that $|f(y)-f(x)|<\varepsilon$ whenever $y \in A$ with $|y-x|<\delta_{x}$. Now for each $x \in A$, set $J_{x}=\left(x-\frac{\delta_{x}}{2}, x+\frac{\delta_{x}}{2}\right)$. Then $A \subseteq \bigcup_{x \in A} J_{x}$. By the compactness of A, there are finitely many $x_{1}, \ldots, x_{N} \in A$ such that $A \subseteq J_{x_{1}} \cup \cdots \cup J_{x_{N}}$. Now take $0<\delta<\min \left(\frac{\delta_{x_{1}}}{2}, \ldots, \frac{\delta_{x_{N}}}{2}\right)$. Now for $x, y \in A$ with $|x-y|<\delta$, then $x \in I_{x_{k}}$ for some $k=1, . ., N$, from this it follows that $\left|x-x_{k}\right|<\frac{\delta_{x_{k}}}{2}$ and $\left|y-x_{k}\right| \leq|y-x|+\left|x-x_{k}\right| \leq \frac{\delta_{x_{k}}}{2}+\frac{\delta_{x_{k}}}{2}=\delta_{x_{k}}$. So for the choice of $\delta_{x_{k}}$, we have $\left|f(y)-f\left(x_{k}\right)\right|<\varepsilon$ and $\left|f(x)-f\left(x_{k}\right)\right|<\varepsilon$. Thus we have shown that $|f(x)-f(y)|<2 \varepsilon$ whenever $x, y \in A$ with $|x-y|<\delta$. The proof is finished.

Sequentially compactness argument:

Suppose that f is not uniformly continuous on A. Then there is $\varepsilon>0$ such that for each $n=1,2, .$. , we can find x_{n} and y_{n} in A with $\left|x_{n}-y_{n}\right|<1 / n$ but $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \varepsilon$. Notice that by the sequentially compactness of $A,\left(x_{n}\right)$ has a convergent subsequence $\left(x_{n_{k}}\right)$ with $a:=\lim _{k} x_{n_{k}} \in A$. Now applying sequentially compactness of A for the sequence $\left(y_{n_{k}}\right)$, then $\left(y_{n_{k}}\right)$ contains a convergent subsequence $\left(y_{n_{k_{j}}}\right)$ such that $b:=\lim _{j} y_{n_{k_{j}}} \in A$. On the other hand, we also have $\lim _{j} x_{n_{k_{j}}}=a$. Since $\left|x_{n_{k_{j}}}-y_{n_{k_{j}}}\right|<1 / n_{k_{j}}$ for all j, we see that $a=b$. This implies that $\lim _{j} f\left(x_{n_{k_{j}}}\right)=f(a)=f(b)=\lim _{j} f\left(y_{n_{k_{j}}}\right)$. This leads to a contradiction since we always have $\left|f\left(x_{n_{k_{j}}}\right)-f\left(y_{n_{k_{j}}}\right)\right| \geq \varepsilon>0$ for all j by the choice of x_{n} and y_{n} above. The proof is finished.

Proposition 3.11 Let f be a continuous function defined on a bounded subset A of \mathbb{R}. Then the following statements are equivalent.
(i): f is uniformly continuous on A.
(ii): There is a unique continuous function F defined on the closure \bar{A} such that $F(x)=f(x)$ for all $x \in A$.

Proof: The Part $(i i) \Rightarrow(i)$ follows from Theorem 1.9 and Proposition 3.10 at once.
The proof of Part $(i) \Rightarrow(i i)$ is divided by the following assertions. Assume that f is uniformly continuous on A.
Claim 1. If $\left(x_{n}\right)$ is a sequence in A and $\lim x_{n}$ exists, then $\lim f\left(x_{n}\right)$ exists.
It needs to show that $\left(f\left(x_{n}\right)\right)$ is a Cauchy sequence. Indeed, let $\varepsilon>0$. Then by the uniform continuity of f on A, there is $\delta>0$ such that $|f(x)-f(y)|<\varepsilon$ whenever $x, y \in A$ with $|x-y|<\delta$. Notice that $\left(x_{n}\right)$ is a Cauchy sequence since it is convergent. Thus, there is a positive integer
N such that $\left|x_{m}-x_{n}\right|<\delta$ for all $m, n \geq N$. This implies that $\left|f\left(x_{m}\right)-f\left(x_{n}\right)\right|<\varepsilon$ for all $m, n \geq N$ and hence, Claim 1 follows.
Claim 2. If $\left(x_{n}\right)$ and (y_{n}) both are convergent sequences in A and $\lim x_{n}=\lim y_{n}$, then $\lim f\left(x_{n}\right)=\lim f\left(y_{n}\right)$.
By Claim 1, $L:=\lim f\left(x_{n}\right)$ and $L^{\prime}=\lim f\left(y_{n}\right)$ both exist. For any $\varepsilon>0$, let $\delta>0$ be found as in Claim 1. Since $\lim x_{n}=\lim y_{n}$, there is $N \in \mathbb{N}$ such that $\left|x_{n}-y_{n}\right|<\delta$ for all $n \geq N$ and hence, we have $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|<\varepsilon$ for all $n \geq N$. Taking $n \rightarrow \infty$, we see that $\left|L-L^{\prime}\right| \leq \varepsilon$ for all $\varepsilon>0$. So $L=L^{\prime}$. Claim 2 follows.
Recall that an element $x \in \bar{A}$ if and only if there is a sequence $\left(x_{n}\right)$ in A converging to x.
Now for each $x \in \bar{A}$, we define

$$
F(x):=\lim f\left(x_{n}\right)
$$

if $\left(x_{n}\right)$ is a sequence in A with $\lim x_{n}=x$. It follows from Claim 1 and Claim 2 that F is a well defined function defined on \bar{A} and $F(x)=f(x)$ for all $x \in A$.
So, it remains to show that F is continuous. Then F is a continuous extension of f to \bar{A} as deired.
Now suppose that F is not continuous at some point $z \in \bar{A}$. Then there is $\varepsilon>0$ such that for any $\delta>0$, there is $x \in \bar{A}$ satisfying $|x-z|<\delta$ but $|F(x)-F(z)| \geq \varepsilon$. Notice that for any $\delta>0$ and if $|x-z|<\delta$ for some $x \in \bar{A}$, then we can choose a sequence $\left(x_{i}\right)$ in A such that $\lim x_{i}=x$. Therefore, we have $\left|x_{i}-z\right|<\delta$ and $\left|f\left(x_{i}\right)-F(z)\right| \geq \varepsilon / 2$ for any i large enough. Therefore, for any $\delta>0$, we can find an element $x \in A$ with $|x-z|<\delta$ but $|f(x)-F(z)| \geq \varepsilon / 2$. Now consider $\delta=1 / n$ for $n=1,2 \ldots$. This yields a sequence $\left(x_{n}\right)$ in A which converges to z but $\left|f\left(x_{n}\right)-F(z)\right| \geq \varepsilon / 2$ for all n. However, we have $\lim f\left(x_{n}\right)=F(z)$ by the definition of F which leads to a contradiction. Thus F is continuous on \bar{A}.
Finally the uniqueness of such continuous extension is clear.
The proof is finished.
Example 3.12 By using Proposition 3.11, the function $f(x):=\sin \frac{1}{x}$ defined on $(0,1]$ cannot be continuously extended to the set $[0,1]$.

4 Lipschitz functions

Definition 4.1 Let A be a non-empty subset of \mathbb{R}. A function $f: A \rightarrow \mathbb{R}$ is called a Lipschitz if there is a constant $C>0$ such that $|f(x)-f(y)| \leq C|x-y|$ for all $x, y \in A$. In this case. Furthermore, if we can find such $0<C<1$, then we call f a contraction.

It is clear that we have the following property.
Proposition 4.2 Every Lipschitz function is uniformly continuous on its domain.
Example 4.3 (i): The sine function $f(x)=\sin x$ is a Lipschitz function on \mathbb{R} since we always have $|\sin x-\sin y| \leq|x-y|$ for all $x, y \in \mathbb{R}$.
(ii) : Define a function f on $[0,1]$ by $f(x)=x \sin (1 / x)$ for $x \in(0,1]$ and $f(0)=0$. Then f is continuous on $[0,1]$ and thus f is uniformly continuous on $[0,1]$. But notice that f is not
a Lipschitz function. In fact, for any $C>0$, if we consider $x_{n}=\frac{1}{2 n \pi+(\pi / 2)}$ and $y_{n}=\frac{1}{2 n \pi}$, then $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|>C\left|x_{n}-y_{n}\right|$ if and only if

$$
\frac{2}{\pi} \cdot \frac{\left(2 n \pi+\frac{\pi}{2}\right)(2 n \pi)}{2 n \pi+\frac{\pi}{2}}=4 n>C
$$

Therefore, for any $C>0$, there are $x, y \in[0,1]$ such that $|f(x)-f(y)|>C|x-y|$ and hence f is not a Lipschitz function on $[0,1]$.

Proposition 4.4 Let A be a non-empty closed subset of \mathbb{R}. If $f: A \rightarrow A$ is a contraction, then there is a fixed point of f, that is, there is a point $a \in A$ such that $f(a)=a$.

Proof: Since f is a contraction on A, there is $0<C<1$ such that $|f(x)-f(y)| \leq C|x-y|$ for all $x, y \in A$. Fix $x_{1} \in A$. Since $f(A) \subseteq A$, we can inductively define a sequence $\left(x_{n}\right)$ in A by $x_{n+1}=f\left(x_{n}\right)$ for $n=1,2 \ldots$ Notice that we have

$$
\left|x_{n+1}-x_{n}\right|=\left|f\left(x_{n}\right)-f\left(x_{n-1}\right)\right| \leq C\left|x_{n}-x_{n-1}\right|
$$

for all $n=2,3 \ldots$ This gives

$$
\left|x_{n+1}-x_{n}\right| \leq C^{n-1}\left|x_{2}-x_{1}\right|
$$

for $n=2,3, \ldots$ So, for any $n, p=1,2 . .$, we see that

$$
\left|x_{n+p}-x_{n}\right| \leq \sum_{i=n}^{n+p-1}\left|x_{i+1}-x_{i}\right| \leq\left|x_{2}-x_{1}\right| \sum_{i=n}^{n+p-1} C^{i-1}
$$

Since $0<C<1$, for any $\varepsilon>0$, there is N such that $\sum_{i=n}^{n+p-1} C^{i-1}<\varepsilon$ for all $n \geq N$ and $p=1,2, \ldots$ Therefore, $\left(x_{n}\right)$ is a Cauchy sequence and thus the limit $a:=\lim _{n} x_{n}$ exists. Since A is closed, we have $a \in A$ and hence f is continuous at a. On the other hand, since $x_{n+1}=f\left(x_{n}\right)$. Therefore, we have $a=f(a)$ by taking $n \rightarrow \infty$. The proof is finished.

Remark 4.5 The Proposition 4.4 does not hold if f is not a contraction. For example, if we consider $f(x)=x-1$ for $x \in \mathbb{R}$, then it is clear that $|f(x)-f(y)|=|x-y|$ and f has no fixed point in \mathbb{R}.

5 Continuous functions defined on intervals

Recall that a non-empty subset I of \mathbb{R} is called an interval if it has one of the following forms.
(i) \mathbb{R}.
(ii) $(-\infty, a]$ or $[a, \infty)$ or $(-\infty, a)$ or (a, ∞) for some $a \in \mathbb{R}$.
(iii) (a, b) or $(a, b]$ or $[a, b)$ or $[a, b]$ for some $a, b \in \mathbb{R}$ with $a<b$.

Lemma 5.1 Let I be a non-empty subset of \mathbb{R}. Suppose that there are different elements in I. Then I is an interval if and only if for any $a, b \in I$ with $a<b$, we have $[a, b] \subseteq I$.

Proposition 5.2 (Intermediate Value Theorem): Let I be an interval and let $f: I \rightarrow \mathbb{R}$ be a continuous function. Suppose that there are a and b in I with $f(a)<z<f(b)$. Then there is c between a and b such that $f(c)=z$.

Proof: Notice that if we consider the function $x \in I \mapsto f(x)-z$, then we may assume that $z=0$. Also, we may assume that $a<b$. Put $x_{1}=a$ and $y_{1}=b$. Now if $f\left(\frac{a+b}{2}\right)=0$, then the result is obtained. If $f\left(\frac{a+b}{2}\right)>0$, then we set $x_{2}=a$ and $y_{2}=\frac{a+b}{2}$. Similarly, if $f\left(\frac{a+b}{2}\right)<0$, then we set $x_{2}=\frac{a+b}{2}$ and $y_{2}=b$. To repeat the same procedure, if there are x_{N} and y_{N} such that $f\left(\frac{x_{N}+y_{N}}{2}\right)=0$, then the result is shown. Otherwise, we can find a decreasing sequence of closed and bounded intervals $[a, b]=\left[x_{1}, y_{1}\right] \supseteq\left[x_{2}, y_{2}\right] \supseteq \cdots$ with $\lim \left(y_{n}-x_{n}\right)=0$ and $f\left(x_{n}\right)<$ $0<f\left(y_{n}\right)$ for all n. Then by the Nested Intervals Theorem, we have $\bigcap_{n}\left[x_{n}, y_{n}\right]=\{c\}$ for some $c \in\left[x_{1}, y_{1}\right]=[a, b] \subseteq I$ because I is an interval. Moreover, we have $\lim _{n} x_{n}=\lim _{n} y_{n}=c$. Then by the continuity of f, we see that $f(c)=\lim f\left(x_{n}\right)=\lim f\left(y_{n}\right)$. Since $f\left(x_{n}\right)<0<f\left(y_{n}\right)$ for all n, we have $f(c)=0$. The proof is finished.

Remark 5.3 The assumption of the intervals in the Intermediate Value Theorem is essential. For example, consider $I=[0,1) \cup(2,3]$ and define $f: I \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}x & \text { if } x \in[0,1) \\ x-1 & \text { if } x \in(2,3]\end{cases}
$$

Then $f(0)<1<f(3)$ but $1 \notin f(I)$.
Corollary 5.4 Let $f ;[a, b] \rightarrow \mathbb{R}$. Suppose that $M:=\sup \{f(x): x \in[a, b]\}$ and $m=\inf \{f(x)$: $x \in[a, b]\}$. Then $f([a, b])=[m, M]$.

Proof: Notice that if $m=M$, then f is a constant function and hence, the result is clearly true.
Now suppose that $m<M$. It is clear that $f([a, b]) \subseteq[m, M]$ because $m \leq f(x) \leq M$ for all $x \in[a, b]$. For the converse inclusion, notice that since $[a, b]$ is compact, there are x_{1} and x_{2} in $[a, b]$ such that $f\left(x_{1}\right)=m$ and $f\left(x_{2}\right)=M$. We may assume that $x_{1}<x_{2}$. To apply the Intermediate Value Theorem for the restriction of f on $\left[x_{1}, x_{2}\right]$, we have $[m, M] \subseteq f\left(\left[x_{1}, x_{2}\right]\right) \subseteq$ $f([a, b])$. The proof is finished.

Corollary 5.5 Let I be an interval and let $f: I \rightarrow \mathbb{R}$ be a continuous non-constant function. Then $f(I)$ is an interval.

Proof: Notice that by Lemma 5.1, it needs to show that for any $c, d \in f(I)$ with $c<d$ implies that $[c, d] \subseteq f(I)$. Suppose that $a, b \in I$ with $a<b$ satisfy $f(a)=c$ and $f(b)=d$. Notice that $[a, b] \subseteq I$ because I is an interval. If we put $M=\sup _{x \in[a, b]} f(x)$ and $m=\inf _{x \in[a, b]} f(x)$, then by Corollary 5.4 , we have

$$
[c, d] \subseteq[m, M]=f([a, b]) \subseteq f(I)
$$

The proof is finished.
Example 5.6 It is impossible to find a continuous surjection from (a, b) onto $(c, d) \cup(e, f)$ where $d \leq e$.

References

[1] R.G. Bartle and I.D. Sherbert, Introduction to Real Analysis, (4th ed), Wiley, (2011).

